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Summary 

The development of a finite element computer code for the static structural analysis 
of beams on elastic foundation is described. Called EBBEF2p (Euler-Bernoulli 
Beams on Two-Parameter Elastic Foundationis) this code is written in the 
computer programme package MATLAB and can handle a wide range of static 
loading problems involving a one-dimensional beam supported by elastic 
foundation. The theoretical basis for the code, its computer implementation, and its 
use to solve example problems are discussed too. 
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1. INTRODUCTION 

The concept of beams on elastic foundations it is extensively used by geotechnical, 
pavement and railroad engineers for foundation design and analysis.  

Currently, the analysis of beams on elastic foundation is performed by using 
special computer programs based on numerical methods, such as Finite Difference 
Method (FDM) and Finite Element Method (FEM). However, these programs are 
limited in their application, most of them being developed only for a very simple 
subgrade model, Winkler's Hypothesis. They cannot be used for other soil models 
such as Two-Parameter, Elastic Half-Space or Elastic Layer and others.  

This paper describes a finite element computer program, as a toolbox to MATLAB, 
developed to analyse the interaction between a beam and its two-parameter elastic 
foundation. By considering a linear variation of both foundation parameter, 
EBBEF2p can account in a consistent way for the bearing soil inhomogeneity. It 
can be used for any practical static loading and support condition including 
prescribed displacement. 

The numerical model uses a cubic Hermitian polynomial to interpolate nodal 
values of the displacements field for a two-node beam elements. The elemental 
stiffness matrix and load vector are obtained  by using Galerkin’s Residual Method 



ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 Iancu Bogdan Teodoru  

Article No.2, Intersections/Intersecţii, Vol.6, 2009, No.1 29 

www.intersections.ro 

with adding the contribution of the foundation as element foundation stiffness 
matrices to the regular flexure beam element. 

2. BEAM-SOIL SYSTEM MODELLING 

Generally, the analysis of bending of beams on an elastic foundation is developed 
on the assumption that the reaction forces of the foundation are proportional at 
every point to the deflection of the beam at that point. The vertical deformation 
characteristics of the foundation are defined by means of identical, independent, 
closely spaced, discrete and linearly elastic springs. The constant of proportionality 
of these springs is known as the modulus of subgrade reaction, ks. This simple and 
relatively crude mechanical representation of soil foundation was first introduced 
by Winkler, in 1867 [1], [2].  

 

Figure 1. Deflections of elastic foundations under uniform pressure: a – Winkler 
foundation; b – practical soil foundations. 

The Winkler model, which has been originally developed for the analysis of 
railroad tracks, is very simple but does not accurately represents the characteristics 
of many practical foundations. One of the most important deficiencies of the 
Winkler model is that a displacement discontinuity appears between the loaded and 
the unloaded part of the foundation surface. In reality, the soil surface does not 
show any discontinuity (Figure 1). 

Historically, the  traditional way to overcome the deficiency of Winkler model is 
by introducing some kind of interaction between the independent springs by 
visualising various types of interconnections such as flexural elements (beams in 
one-dimension (1-D), plates in 2-D), shear-only layers and deformed, pretensioned 
membranes [1]. The foundation model proposed by Filonenko and Borodich in 
1940 [1] acquires continuity between the individual spring elements in the Winkler 
model by connecting them to a thin elastic membrane under a constant tension. In 
the model proposed by Hetényi in 1950 [1], interaction between the independent 
spring elements is accomplished by incorporating an elastic plate in three-
dimensional problems, or an elastic beam in two-dimensional problems, that can 
deforms only in bending. Another foundation model proposed by Pasternak in 1954 
acquires shear interaction between springs by connecting the ends of the springs to 
a layer consisting of incompressible vertical elements which deform only by 
transverse shearing [1]. 
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This class of mathematical models have another constant parameter which 
characterizes the interaction implied between springs and hence are called two-
parameter models or, more simply, mechanical models (Figure 2). 

 
Figure 2. Beam resting on two-parameter elastic foundation. 

Another approach to developing, and also to improve foundation models, starts 
with the three complex sets of partial-differential equations (compatibility, 
constitutive, equilibrium) governing the behavior of the soil as a semi-infinite 
continuum, and then introduce simplifying assumptions with respect to 
displacements or/and stresses in order to render the remaining equations fairly easy 
to solve in an exact, closed-form manner. These are referred to as simplified-
continuum models. 

Vlasov, in 1960, adopted the simplified-continuum approach based on the 
variational principle and derived a two parameter foundation model [3]. In his 
method the foundation was treated as an elastic layer and the constraints were 
imposed by restricting the deflection within the foundation to an appropriate mode 
shape, (z). The two parameter Vlasov model (Figure 3) accounts for the effect of 
the neglected shear strain energy in the soil and shear forces that come from 
surrounding soil by introducing an arbitrary parameter, γ, to characterize the 
vertical distribution of the deformation in the subsoil [3]; the authors did not 
provide any mechanism for the calculation of γ. Jones and Xenophontos [3] 
established a relationship between the parameter γ and the displacement 
characteristics, but did not suggest any method for the calculation of its actual 
value. Following Jones and Xenophontos, Vallabhan and Das [4] determined the 
parameter γ as a function of the characteristic of the beam and the foundation, 
using an iterative procedure. They named this model a modifed Vlasov model [4], 
[5]. 
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Figure 3. Beam resting on two-parameter Vlasov foundation. 

3. FINITE ELEMENT MODELLING 

All foundation models shown foregoing lead to the same differential equation. 
Basically, all these models are equivalent and differ only in the definition of its 
parameters [6].  

3.1. Governing Differential Equation 

The various two-parameter elastic foundation models define the reactive pressure 
of the foundation p(x), as [6] 
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where: B is the width of the beam cross section; w – deflection of the centroidal 
line of the beam and k1 is the second foundation parameter with a different 
definition for each foundation model. As a special case, if the second parameter k1 

is neglected, the mechanical modelling of the foundation converges to the Winkler 
formulation. For the case of a (linear) variable subgrade coefficients, Equation (1) 
may be written as 
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Using the last relation and beam theory, one can generate the governing differential 
equations for the centroidal line of the deformed beam resting on two-parameter 
elastic foundation as [6] 

 
 

     
 

 
4 2

1
4 2

d d

d d

w x w x
EI k w k qx x x x

x x
   , (3) 

where: E is the modulus of elasticity for the constitutive material of the beam;   I – 
the moment of inertia for the cross section of the beam and q(x) is the distributed 
load on the beam. 

3.1.1. Parameters estimation 

It is difficult to interpret exactly what subgrade material properties or 
characteristics are reflected in the various mechanical elements (springs, shears 
layers, etc.) thus evaluation on a rational, theoretical basis is cumberstome. The 
advantage of simplified-continuum approach is the elimination of the necesity to 
determine the values of the foundation parameters, arbitrarily, because these values 
can be computed from the material properties (deformation modulus Es, Poisson 
number νs and depth of influence zone H along the beam) for the soil. Thus there is 
insight into exactly what each model assumes and implies in terms of subgrade 
behavior.  

With the assumptions of 

vertical displacement, 

      v x,z w x z  and (4) 

horizontal displacement, 
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  1 0u x,z  , (5) 

and using variational calculus, Vlasov model parameters are expressed as [3], [4], 
[5] 
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is a function defining the variation of the deflection v(x, z) in the z direction, which 
satisfy the boundary condition shown in Figure 3, and  
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Since γ is not known apriory, the solution technique for parameters evaluation is an 
iterative process which is dependent upon the value of the parameter γ. Therefore, 
by assuming an approximate value of γ initially, the values of k and k1 are evaluated 
using (6). From the solution of the deflection of the beam, the value of γ is 
computed using (8). The new γ value is again used to compute new values of k and 
k1. The procedure is repeated until two succesive values of γ are approximately 
equal [4], [5]. 

3.2. Finite Element Formulation 

The assumptions and restrictions underlying the development are the same as those 
of elementary beam theory with the addition of [7], [8] 

• the element is of length l and has two nodes, one at each end; 
• the element is connected to other elements only at the nodes; 
• element loading occurs only at the nodes. 

Figure 4. shows a finite element of a beam on a two-parameter elastic foundation 

were    1 1 2 2
T

ed w w  are the degrees of freedom of the element and 

   1 1 2 2
T

eS Q M Q M are loads applied to the nodes [7], [8]. 
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Figure 4. Nodal degrees of freedom and corresponding nodal forces on a beam element on a 

two-parameter  foundation. 

It must note that Q1 and Q2 from the load vector {Se} are not simply the transverse 
shear forces in the beam; they includes also the shear resistance associated with 
modulus of the two-parameter foundation [6]. Force Qi (i = 1, 2), is a generalized 
shear force defined by  

 i i iQ V V   , (9) 

were:  
 3

3

d

di

w xV EI
x

  is the usual shear contribution from elementary beam 

theory;  
 

1
d

di

w xV k
x

    – the shear contribution from two-parameter elastic 

foundation (negative sign arises because a positive slope requires opposite shear 
forces in the foundation) [6].  

Considering the four boundary conditions and the one-dimensional nature of the 
problem in terms of the independent variable, we assume the displacement function 
in the form [7], [8]: 

   2 3
0 1 2 3ew a a x a x a xx     ,  (10) 

For the both foundation parameters a linear variation is considered [8], 

    
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1 111   , ,
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
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
 . (11) 

The choice of a cubic function to describe the displacement is not arbitrary. With 
the specification of four boundary conditions, we can determine no more than four 
constants in the assumed displacement function. The second derivative of the 
assumed displacement function, we(x) is linear; hence, the bending moment varies 
linearly, at most, along the length of the element. This is in accord with the 
assumption that loads are applied only at the element nodes [7]. 
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Applying the boundary conditions and solving the constants from (10) and then 
substituting the results back into (10) we can obtain the interpolation form of the 
displacement as [7], [8] 

              1 1 2 1 3 2 4 2
T
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where Ni(x), (i = 1, …, 4) are the well-known shape functions of Hermite type that 
describe the distribution of displacement in terms of nodal values in the nodal 
displacement vector {de}: 

 
   

   

2 3 2 3

1 22 3 2

2 3 2 3

3 42 3 2

1 3 2  2

3 2  

x x x x
N , N xx x

l l l l
x x x x

N , Nx x
l l l l

      

     

. (13) 

As the polynomial (12) represents an approximate solution of the governing 
Equations (3), it result the residuum (error or discrepancy): 
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The minimizing of this residuum means to the annulment of Galerkin balanced 
functional where the weight is considered for each of the four functions, Ni(x). So 
the element stiffness matrix resulting are [6]…[11]: 
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were,  

              e e ee w t d S Rk k k     (18) 

is the matrix notation of the governing differential equation (3) and [ke] is the 
stiffness matrix of the flexure beam element; [kw] is the stiffness matrix of the first 
subgrade parameter (springs layer); [kt] is the stiffness matrix of the second 
subgrade parameter. 

The vector {Re} depends on the distributed load on the element and, for q(x) =  q = 
const., it result 

    2 2

2 12 2 12

T

e
ql ql ql qlR .   (19) 

4. PROGRAM GENERAL DESCRIPTION 

A typical finite element program consists of the following sections [12] (Figure 5): 
1. Preprocessing section. 
2. Processing section. 
3. Post-processing section. 

In the preprocessing section the data and structures that describe the particular 
problem statement are defined. These include the finite element discretization, 
material properties, solution parameters, etc.  

The processing section is where the finite element objects (e.g. stiffness matrices, 
force vectors, etc.) are computed, boundary conditions are enforced and the system 
is solved.  

The post-processing section is where the results from the processing section are 
analyzed. Here stresses may be calculated and data might be visualized.  

The Graphical User Interface (GUI) of the EBBEF2p lets the user to interactively 
enter the operations from the above sections. Although many pre and post-
processing operations are already programmed in MATLAB, the EBBEF2p 
environment have build-functions that come to answer to a particular problem 
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statement. The procedure used to obtain a complet solution for a beam resting on 
two-parameter foundation is indicated below. 

A EBBEF2p work session is started with calling the main function file input.m, 
from the MATLAB prompt. The functions that are integrated here (draw, write and 
user interface controls – mnu function) aids the user in generating data defining the 
finite element model, for a given problem, with taking advantage of a fully 
functional GUI (Figure 6).  

 
Figure 5. Flow chart for EBBEF2p. 

All the finite element data (geometry, material properties, loads,  supports, soil 
parameters and generated FE mesh) are write in a binary data file input.mat. 

Before EBBEF2p solver (processor) initialization (ebbef2p.m function file) are 
checked the subgrade conditions: 

• if exist ks or (ks and k1) values, the finite element model is analysed with these 
one; 

• in this case, the user is required to put in distributions of the deformation 
modulus Es, the Poisson number ν and a depth of influence zone H along a 
beam (if these are not introduced apriory). The program then exploits these 
parameters to compute values ks and k1 using the iterative procedure described 
foregoing. 

In the locations where there is no subsoil, the user can simply set to zero ks and k1 
parameters (or Es). 
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By collecting element data from the input file, development of the elements 
stiffness matrices, which are assembling into the global stiffness matrix by using 
the direct stiffness approach, is done. Partitioning the global stiffness matrix by 
applying boundary condition (forces, displacements, supports), the remain matrix 
equation is solved by using Gaussian elimination. With the obtained solution, the 
displacements, global and nodal forces are calculated and saved to the binary data 
file output.mat. 

Finaly, the data stored in output file are visualized by the help of MATLAB build-
in plot function. 

 
Figure 6. Sample input screen of EBBEF2p. 

 

 



ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 Iancu Bogdan Teodoru  

Article No.2, Intersections/Intersecţii, Vol.6, 2009, No.1 39 

www.intersections.ro 

5. EXAMPLE PROBLEMS.  BENCHMARKING 

In order to give a comparison between the EBBEF2p solution and the other 
solution from theory of beams on elastic foundation, a few example problems are 
presented below. 

5.1. Beam on Winkler Foundation 

With the general footing and load data shown in Figure 7 (after [13]), the 
correponding EBBEF2p model is given in Figure 8. 

 

Figure 7. Geometry and load data for the considered example. 

 
Figure 8. EBBEF2p finite element model. 
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Figure 9. Sample EBBEFp output screen for bending moment. 

The results of the numerical analyses have been summarized in Table 1 (maximum 
values) and a typical EBBEFp output for bending moment pattern is shown in 
Figure 9. 

 

 

Table 1. Comparison between EBBEF2p and Bowles solution. 
 EBBEF2p Bowles [13] 
Rotation (at node 1), [rad] 0.00269 0.00253 
Vertical displacement (at node 1), [mm] 12.3 11.8 
Bending moment (at node 6), [kNm] 1387.1 1223.3 
Shearing force (at node 10, left), [kN] 1236.7 1190.7 
Soil pressure (at node 1), [kN/m] 271.3 260.1 

 

5.2. Fixed-End Beam on Winkler Foundation 

The example problem shown in Figure 10 is solved in [14] by the Umanski’s 
method, only for the bending moment. 

 

Figure 10. Fixed-end beam on Winkler foundation. 



ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 Iancu Bogdan Teodoru  

Article No.2, Intersections/Intersecţii, Vol.6, 2009, No.1 41 

www.intersections.ro 

A total of 27 two-node beam element were used to define the corresponding 
EBBEF2p finite element mesh shown in Figure 11.   

 
Figure 11. EBBEF2p finite element model. 

The computed bending moment pattern is shown in Figure 12. It can be noted that 
the obtained solution is fairly close to those by Umanski’s method.  

 
Figure 12. EBBEFp output for bending moment. 

5.3. Beam on Modified Vlasov Foundation 

As numerical example, a beam of length L = 20 m, width b = 0.5 m and height       
h = 1.0 m with modulus of elasticity E = 27000 MPa is considered to be suported 
by foundation having depth H = 5 m, deformation modulus Es = 20 MPa and 
Poissons ratio νs = 0.25 (Figure 13). A concentrated load P = 500 kN applied at the 
center of the beam, is assumed. The results of this example problem are compared 
with solutions obtained by two-dimensional finite element plane strain analyses 
(2D FEM). 

A total of 905, 15-noded triangular elements with a fourth order interpolation for 
displacements and twelve Gauss points for the numerical integration were used to 
define the mesh for the 2D FEM model. 



ISSN 1582-3024

http://www.ce.tuiasi.ro/intersections

 EBBEF2p - A Computer Code for Analysing Beams on Elastic Foundations 

Article No.2, Intersections/Intersecţii, Vol.6, 2009, No.1 42 

www.intersections.ro 

 
Figure 13. Geometry of the considered example: (a) – EBBEF2p; (b) – 2D FEM. 

 

In both EBBEF2p and 2D FEM models, the beam is modeled with flexure beam 
element (Table 2). 

Table 2. Beam modelling. 
 EBBEF2p model 2D FEM model 
Element type linear with 2 nodes linear with 5 nodes 
Total number of nodes 35 469 
Total number of elements 34 117 

 

The results from both 2D FEM and EBBEF2p technique are shown for comparison 
in Figure 14. It can be noted that both solution have almost the same shape and 
they are in good agreement. However, a full comparison between these two 
technique is not fair, because in the 2D finite element solution, complete 
compatibility of displacements at the beam-soil interface is assumed, but only 
vertical displacement compatibility exists in Vlasov model [5]. 
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Figure 14. EBBEF2p vs. 2D FEM solution: (a) – settlement; (b) – soil pressure;                  
(c) – bending moment; (d) – shearing force. 

The results of the final computed values of the soil parameters are presented in 
Table 3. This demonstrate the versatility of the modified Vlasov foundation model, 
programmed in EBBEF2p: solve beam on elastic foundation problems without 
having a need to establish the values of foundation parameters. 

Table 3. The obtained values of Vlasov foundation parameters. 

k , [kN/m2] 1k , [kN] γ 
Number of 
iterations 

2401.57 6515.22 0.418 3 

6. CONCLUSIONS 

A computer program called EBBEF2p has been developed in MATLAB 
environment in order to performs complete static structural analysis of  beams 
which rests on one or two-parameter elastic foundation for any loading and 
boundary condition. By considering a linear variation of both foundation 
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parameter, EBBEF2p can account in a consistent way for the bearing soil 
inhomogeneity.  

The performance and accuracy of EBBEF2p has been carefully tested by carrying 
out analyses of problems with known solution or comparing results with solutions 
obtained on numerical model more complex. As a general observation, the 
obtained EBBEF2p solution are reasonably close to those from theory of beams on 
elastic foundation and also in good agreement with more sophisticated finite 
element solutions.  
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